-(x^2-2)/(x^2+2)^2=0

Simple and best practice solution for -(x^2-2)/(x^2+2)^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(x^2-2)/(x^2+2)^2=0 equation:



-(x^2-2)/(x^2+2)^2=0
Domain of the equation: (x^2+2)^2!=0
x∈R
We multiply all the terms by the denominator
-(x^2-2)=0
We get rid of parentheses
-x^2+2=0
We add all the numbers together, and all the variables
-1x^2+2=0
a = -1; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-1)·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-1}=\frac{0-2\sqrt{2}}{-2} =-\frac{2\sqrt{2}}{-2} =-\frac{\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-1}=\frac{0+2\sqrt{2}}{-2} =\frac{2\sqrt{2}}{-2} =\frac{\sqrt{2}}{-1} $

See similar equations:

| 2/9x=7 | | 2(x-1)+8=4(x-5) | | 24b^2-138b-210=0 | | (x-3/2)+1/3=4x/5 | | 10=2(p-4) | | 14-2=c | | -7/13x=5/2 | | 76.9=28.2n+20.5 | | 4/5x+6/5=-12 | | X^2=3x+88 | | x/100=3/5 | | x2=3x+88 | | H=-16t^2+910 | | 4x-3=2x-5÷2 | | -4(k-6)=12 | | 2/7+a=45/6 | | 4x+2/7=3 | | x^2+50=20x | | 3(t-4)+7=-11 | | 3x=18/5 | | 6x+17=7x-3 | | 2(x+6)=2(6+3) | | 9x-2/5=-1 | | 3(3((30)/(13))-1)-(7-4((30)/(13)))=x | | 1/2x−5=1/3x+7 | | 12x+20=13x+8 | | (x−7)^3/4=8 | | 1/2x−5=1/3x+7 | | 24+8(z+3)=7z+4 | | X^2+15x+17=0 | | 2(x-5)-4=-4(-6x+1)-7x | | -2(x+4)=2x-2+2(3x+3) |

Equations solver categories